# ON THE HILBERT FUNCTION OF THE UNION OF TWO LINEAR STAR-CONFIGURATIONS IN $\mathbb{P}^{2}$ 

Yong Su Shin*


#### Abstract

It has been proved that the union of two linear star-configura- tions in $\mathbb{P}^{2}$ of type $t \times s$ for $3 \leq t \leq 9$ and $3 \leq t \leq s$ has generic Hilbert function. We extend the condition to $t=10$, so that it is true for $3 \leq t \leq 10$, which generalizes the result of [7].


## 1. Introduction

In recent years Hilbert functions and minimal free resolutions of star-confi- gurations have been extensively studied (see $[1,7,8]$ ) but those of fat star-configurations are in a stage of exploring. In this paper, we discuss the Hilbert function of the union of two linear star-configurations in the 2 dimensional projective space $\mathbb{P}^{2}$ over an algebraically closed field $k$ of an arbitrary characteristic. Let $R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ be an $(n+1)$ variable polynomial ring over a field $k$ and let $I$ be a homogeneous ideal of $R$ (or the ideal of a subscheme in $\mathbb{P}^{n}$ ). Then the numerical function

$$
\mathbf{H}(R / I, t):=\operatorname{dim}_{k} R_{t}-\operatorname{dim}_{k} I_{t}
$$

is called a Hilbert function of the ring $R / I$. If $I:=I_{\mathbb{X}}$ is the ideal of a subscheme $\mathbb{X}$ in $\mathbb{P}^{n}$, then we denote the Hilbert function of $\mathbb{X}$ by

$$
\mathbf{H}\left(R / I_{\mathbb{X}}, t\right):=\mathbf{H}_{\mathbb{X}}(t) .
$$

It has been also in question to find the vector space dimension of the graded components of coordinate rings of subschemes $\mathbb{X}$ in $\mathbb{P}^{n}$, that is, the Hilbert function of $\mathbb{X}$ (see $[2,3,4,5,6]$ ).

To introduce fat star-configuration and star-configuration, we start with a variety of some specific ideal of $R$. In [1], the authors proved that if

[^0]$F_{1}, F_{2}, \ldots$,
$F_{r}$ are general forms in $R$ with $r \geq 2$, then
$$
\bigcap_{1 \leq i<j \leq r}\left(F_{i}^{a}, F_{j}^{b}\right)=\left(\tilde{F}_{1}, \cdots, \tilde{F}_{r}\right),
$$
where
$$
\tilde{F}_{j}=\frac{\prod_{i=1}^{r} F_{i}^{a}}{F_{j}^{a}} \cdot\left(F_{j+1} \cdots F_{r}\right)^{b-a} \quad \text { for } \quad j=1, \ldots, r, 1 \leq a \leq b .
$$

The variety $\mathbb{X}$ in $\mathbb{P}^{n}$ of the ideal

$$
\left(\tilde{F}_{1}, \ldots, \tilde{F}_{r}\right)=\bigcap_{1 \leq i<j \leq r}\left(F_{i}^{a}, F_{j}^{b}\right)
$$

is called a fat star-configuration in $\mathbb{P}^{n}$ of type $(r, a, b)$ defined by general forms $F_{1} \ldots, F_{r}$. In particular, if $a=b=1$ then we simply call $\mathbb{X}$ a starconfiguration in $\mathbb{P}^{n}$ of type $r$ defined by general forms $F_{1} \ldots, F_{r}$. Furthermore, if $F_{1}, \ldots, F_{r}$ are all general linear forms, then $\mathbb{X}$ is called a fat linear star-configuration of type $(r, a, b)$. If $\mathbb{X}$ is a fat linear star-configuration of type ( $r, 1,1$ ), then we simply call $\mathbb{X}$ a linear star-configuration of type $r$.

In [8], the author studied the relation between the dimension of secant varieties $\operatorname{Sec}_{r}\left(\operatorname{Split}_{d}\left(\mathbb{P}^{n}\right)\right)$ to the variety of completely decomposable forms in $R$ and the Hilbert function of the union $\mathbb{X}$ of two linear starconfigurations in $\mathbb{P}^{2}$ of type $t \times s$, and showed that

1 . $\mathbb{X}$ has generic Hilbert function for $3 \leq t \leq 9$ and $3 \leq t \leq s$, and
2. the secant variety $\operatorname{Sec}_{1}\left(\operatorname{Split}_{d}\left(\mathbb{P}^{n}\right)\right)$ to the variety of completely decomposable forms in $R$ is not defective for $d \geq 3$.
We therefore focus on extension of the result (1) in Section 2 and prove that the Hilbert function of the union $\mathbb{X}$ of two linear star-configurations in $\mathbb{P}^{2}$ of type $t \times s$, and that $\mathbb{X}$ has generic Hilbert function when $3 \leq$ $t \leq 10$ and $3 \leq t \leq s$ (see Corollary 2.3). More precisely, we use lines vanishing on multiple points to apply Bezóut's theorem. This is a different idea from [7], which allows us to expand the result of [7].
2. The Hilbert function of the union of star-configurations in $\mathbb{P}^{2}$

Let $\mathbb{X}:=\mathbb{X}^{(t, s)}$ be the union of two linear star-configurations $\mathbb{X}_{1}$ and $\mathbb{X}_{2}$ in $\mathbb{P}^{2}$ of types $t$ and $s$ (type $t \times s$ for short), defined by general linear forms $M_{1}, \ldots, M_{t}$ and $L_{1}, L_{2}, \ldots, L_{s}$ for $3 \leq t \leq s$, respectively, and let $\mathbb{Y}:=\mathbb{X}^{(t, s-1)}$ be the union of two linear star-configurations $\mathbb{Y}_{1}=\mathbb{X}_{1}$ and $\mathbb{Y}_{2}$ of type $t \times(s-1)$ defined by linear forms $M_{1}, \ldots, M_{t}$ and $L_{2}, \ldots, L_{s}$, respectively. Note that $\mathbb{Y}_{2} \subseteq \mathbb{X}_{2}$ and $\mathbb{Y} \subseteq \mathbb{X}$.

The linear forms create points and lines in $\mathbb{P}^{2}: Q_{i, j}$ is a point in $\mathbb{X}_{1}$ defined by linear forms $M_{i}$ and $M_{j} ; P_{i, j}$ is a point in $\mathbb{X}_{2}$ defined by linear forms $L_{i}$ and $L_{j}$ with $i<j ; \mathbb{L}_{i}$ and $\mathbb{M}_{j}$ are lines defined by linear forms $L_{i}$ and $M_{j}$ for $i=1, \ldots, s$ and $j=1, \ldots, 10$, respectively. We define $G:=L_{2} \cdots L_{s}$, a product of $(s-1)$ linear forms, and $L:=L_{1}$.

In this section, we shall prove that the Hilbert function of the union of two linear star-configurations in $\mathbb{P}^{2}$ of types 10 and $s$ with $s \geq 10$ has generic Hilbert function. The proof is based on mainly two ideas. The first idea is that if $\mathbb{X}^{\prime}$ is the union of two finite sets of points defined by linear forms $M_{1}, \ldots, M_{t}$ and $L_{1}, L_{2}, \ldots, L_{s}$ in $R$ (not necessarily general), respectively, then the points in $\mathbb{X}$ are more general than the points in $\mathbb{X}^{\prime}$. This implies for every $i \geq 0$ we get

$$
\mathbf{H}_{\mathbb{X}^{\prime}}(i) \leq \mathbf{H}_{\mathbb{X}}(i) .
$$

The second idea is Bezout's Theorem in $\mathbb{P}^{2}$ to find the union $\mathbb{X}^{\prime}$ of two sets of points defined by linear forms $M_{1}, \ldots, M_{t}$ and $L_{1}, L_{2}, \ldots, L_{s}$ in $R$, respectively, such that

$$
\begin{aligned}
\mathbf{H}_{\mathbb{X}}(i) & =\mathbf{H}_{\mathbb{X}}(i) \\
& =\min \left\{|\mathbb{X}|,\binom{i+2}{2}\right\} \quad \text { for some } \quad i \geq 0 .
\end{aligned}
$$

In other words, if a form $F$ of degree $d$ in $R$ vanishes on $(d+1)$-points on the line defined by a linear form $M$ in $R$, then $F$ is divided by the linear form $M$. Throughout this section, we shall not distinguish $\mathbb{X}$ from $\mathbb{X}^{\prime}$ for convenience. For the rest of this section, we shall often use the following exact sequence.

$$
\begin{equation*}
0 \rightarrow R / I_{\mathbb{X}} \rightarrow R / I_{\mathbb{Y}} \oplus R /(L, G) \rightarrow R /\left(I_{\mathbb{Y}}, L, G\right) \rightarrow 0 . \tag{2.1}
\end{equation*}
$$

Proposition 2.1. $\mathbb{X}:=\mathbb{X}^{(10,10)}$ has generic Hilbert function.
Proof. By [7, Theorem 3.8] and equation (2.1),

| $\mathbf{H}\left(R / I_{\mathbb{X}},-\right)$ | $:$ | 1 | 3 | $\cdots$ | 66 | 78 | $\beta$ | 90 | $\rightarrow$, |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{H}\left(R / I_{\mathbb{Y}},-\right)$ | $:$ | 1 | 3 | $\cdots$ | 66 | 78 | 81 | 81 | $\rightarrow$, |
| $\mathbf{H}(R /(L, G),-)$ | $:$ | 1 | 2 | $\cdots$ | 9 | 9 | 9 | 9 | $\rightarrow$, |
| $\mathbf{H}\left(R /\left(I_{\mathbb{Y}}, L, G\right),-\right)$ | $:$ | 1 | 2 | $\cdots$ | 9 | 9 | $\gamma$ | 0 | $\rightarrow$, |
| $\mathbf{H}\left(R /\left(I_{\mathbb{Y}}, L\right),-\right)$ | $:$ | 1 | 2 | $\cdots$ | 11 | 12 | 3 | 0 | $\rightarrow$, |

where $\beta$ and $\gamma$ are unknown. Hence it suffices to show that $\beta=90$, that is, $\operatorname{dim}_{k}\left(I_{\mathbb{X}}\right)_{12}=1$.

Let $\mathbb{X}_{1}$ and $\mathbb{X}_{2}$ be finite sets of 45 points defined by $L_{1}, L_{2}, L_{3}, L_{4}, L_{5}, L_{6}$, $L_{7}, L_{8}, L_{9}, L_{10}$, and $M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}, M_{7}, M_{8}, M_{9}, M_{10}$, respectively, where $L_{i}$ and $M_{j}$ are linear forms (see Figure 1), and $\mathbb{X}:=\mathbb{X}_{1} \cup \mathbb{X}_{2}$.


Figure 1

As shown in Figure 1, we have that

| $L_{1}$ | vanishes on 13 points | $\begin{aligned} & P_{1,2}, P_{1,3}, P_{1,4}, P_{1,5}, P_{1,6}, P_{1,7}, P_{1,8}, P_{1,9}, P_{1,10}, \\ & Q_{1,2}, Q_{1,3}, Q_{2,3}, Q_{4,5}, \end{aligned}$ |
| :---: | :---: | :---: |
| $L_{2}$ | vanishes on 12 points | $\begin{aligned} & P_{2,3}, P_{2,4}, P_{2,5}^{5}, P_{2,6}, P_{2,7}, P_{2,8}, P_{2,9}, P_{2,10}, Q_{1,4}, \\ & Q_{3,5}, Q_{3,6}, Q_{5,6}, \end{aligned}$ |
| $L_{3}$ | vanishes on 11 points | $\begin{aligned} & Q_{3,5}^{23,}, Q_{3,5}^{5}, P_{3,6}, P_{3,7}, P_{3,8}, P_{3,9}, P_{3,10}, Q_{2,6}, Q_{2,7}, \\ & Q_{3,4}, Q_{6,7}, \end{aligned}$ |
| $L_{4}$ | vanishes on 10 points | $P_{4,5}, P_{4,6}, P_{4,7}, P_{4,8}, P_{4,9}, P_{4,10}, Q_{1,7}, Q_{1,8}, Q_{2,4},$ |
| $L_{5}$ | vanishes on 9 points | $P_{5,6}, P_{5,7}, P_{5,8}, P_{5,9}, P_{5,10}, Q_{2,8}, Q_{4,7}, Q_{4,9}, Q_{7,}$ |
| $L_{6}$ | vanishes on 8 points | ${ }_{6,7}, P_{6,8}, P_{6,9}, P_{6,10}, Q_{3,9}, Q_{6,8}, Q^{\prime}$ |
| $M_{10}$ | vanishes on 7 points | $Q_{1,10}, Q_{2,10}, Q_{3,10}, Q_{4,10}, Q_{5,10}, Q_{7,10}, Q_{9,10}$, |
| $M_{5}$ | vanishes on 6 points | $P_{7,8}, Q_{1,5}, Q_{2,5}, Q_{5,7}, Q_{5,8}, Q_{5,9}$, |
| $M_{9}$ | vanishes on 5 points | $P_{7,9}, Q_{1,9}, Q_{2,9}, Q_{6,9}, Q_{8,9}$, |

On the Hilbert function of the union of two linear star-configurations in $\mathbb{P}^{2} 557$

$$
\begin{array}{lll}
L_{10} & \text { vanishes on 4 points } & P_{7,10}, P_{8,10}, P_{9,10}, Q_{4,8}, \\
M_{3} & \text { vanishes on 3 points } & P_{8,9}, Q_{3,7}, Q_{3,8}, \\
M_{6} & \text { vanishes on 2 points } & Q_{1,6}, Q_{4,6}
\end{array}
$$

By Bezout's theorem, for every $N \in\left(I_{\mathbb{X}}\right)_{12}$,

$$
N=\alpha L_{1} \cdots L_{6} L_{10} M_{3} M_{5} M_{6} M_{9} M_{10}
$$

for some $\alpha \in k$. Thus

$$
\operatorname{dim}_{k}\left(I_{\mathbb{X}}\right)_{12}=1
$$

which completes the proof.
Theorem 2.2. $\mathbb{X}:=\mathbb{X}^{(10, s)}$ has generic Hilbert function for $s \geq 10$.
Proof. By Proposition 2.1, this theorem holds for $s=10$. Now assume $s \geq 11$. We shall prove these with 5 cases.

Case 1. Let $11 \leq s \leq 14$. First assume $s=11$. By Proposition 2.1,

| $\mathbf{H}\left(R / I_{\mathbb{X}},-\right)$ | $:$ | 1 | 3 | $\cdots$ | 66 | 78 | $\beta$ | 100 | $\rightarrow$, |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{H}\left(R / I_{\mathbb{Y}},-\right)$ | $:$ | 1 | 3 | $\cdots$ | 66 | 78 | 90 | 90 | $\rightarrow$, |
| $\mathbf{H}(R /(L, G),-)$ | $:$ | 1 | 2 | $\cdots$ | 10 | 10 | 10 | 10 | $\rightarrow$, |
| $\mathbf{H}\left(R /\left(I_{\mathbb{Y}}, L, G\right),-\right)$ | $:$ | 1 | 2 | $\cdots$ | 10 | 10 | $\gamma$ | 0 | $\rightarrow$, |
| $\mathbf{H}\left(R /\left(I_{\mathbb{Y}}, L\right),-\right)$ | $:$ | 1 | 2 | $\cdots$ | 11 | 12 | 12 | 0 | $\rightarrow$, |

where $\beta$ and $\gamma$ are unknown. Hence it suffices to show that $\beta=91$, that is, $\operatorname{dim}_{k}\left(I_{\mathbb{X}}\right)_{12}=0$.

As shown in Figure 2, we have that

$$
\begin{aligned}
& L_{1} \quad \text { vanishes on } 13 \text { points } \quad P_{1,2}, P_{1,3}, P_{1,4}, P_{1,5}, P_{1,6}, P_{1,7}, P_{1,8}, P_{1,9} \text {, } \\
& P_{1,10}, P_{1,11}, Q_{1,2}, Q_{1,3}, Q_{2,3} \text {, } \\
& L_{2} \quad \text { vanishes on } 12 \text { points } P_{2,3}, P_{2,4}, P_{2,5}, P_{2,6}, P_{2,7}, P_{2,8}, P_{2,9}, P_{2,10} \text {, } \\
& P_{2,11}, Q_{3,4}, Q_{3,5}, Q_{4,5}, \\
& L_{3} \quad \text { vanishes on } 11 \text { points } P_{3,4}, P_{3,5}, P_{3,6}, P_{3,7}, P_{3,8}, P_{3,9}, P_{3,10}, P_{3,11} \text {, } \\
& P_{3,11}, Q_{5,6}, Q_{5,7}, Q_{6,7}, \\
& L_{4} \quad \text { vanishes on } 10 \text { points } \quad P_{4,5}, P_{4,6}, P_{4,7}, P_{4,8}, P_{4,9}, P_{4,10}, P_{4,11}, Q_{1,5} \text {, } \\
& Q_{1,8}, Q_{5,8}, \\
& M_{10} \quad \text { vanishes on } 9 \text { points } \quad Q_{1,10}, Q_{2,10}, Q_{3,10}, Q_{4,10}, Q_{5,10}, Q_{6,10}, Q_{7,10}, \\
& Q_{8,10}, Q_{9,10} \text {, }
\end{aligned}
$$

$M_{9} \quad$ vanishes on 8 points $\quad Q_{1,9}, Q_{2,9}, Q_{3,9}, Q_{4,9}, Q_{5,9}, Q_{6,9}, Q_{7,9}, Q_{8,9}$,
$L_{5} \quad$ vanishes on 7 points $\quad P_{5,6}, P_{5,7}, P_{5,8}, P_{5,9}, P_{5,10}, P_{5,11}, Q_{1,6}$,
$L_{6} \quad$ vanishes on 6 points $\quad P_{6,7}, P_{6,8}, P_{6,9}, P_{6,10}, P_{6,11}, Q_{1,7}$,
$M_{8}$ vanishes on 5 points $Q_{2,8}, Q_{3,8}, Q_{4,8}, Q_{6,8}, Q_{7,8}$,
$L_{7} \quad$ vanishes on 4 points $P_{7,8}, P_{7,9}, P_{7,10}, P_{7,11}$,
$L_{8} \quad$ vanishes on 3 points $\quad P_{8,9}, P_{8,10}, P_{8,11}$,
$L_{9} \quad$ vanishes on 2 points $\quad P_{9,10}, P_{9,11}$.
By Bezout's theorem, for every $N \in\left(I_{\mathbb{X}}\right)_{12}$,

$$
N=\alpha L_{1} \cdots L_{9} M_{8} M_{9} M_{10}
$$

for some $\alpha \in k$. Moreover, since all the 10 -points $P_{10,11}, Q_{1,4}, Q_{2,4}, Q_{2,5}$, $Q_{2,6}, Q_{2,7}, Q_{3,6}, Q_{3,7}, Q_{4,6}$, and $Q_{4,7}$ are not on a single line, and $N$ has to vanish on those 10-points, where none of $L_{1}, \ldots, L_{9}, M_{8}, M_{9}, M_{10}$ can vanish, we see that $N=0$. Therefore,

$$
\left(I_{\mathbb{X}}\right)_{12}=\{0\},
$$

as we wished.
By the same idea as in the case for $s=11$, one can show that $\mathbb{X}^{(10, s)}$ has generic Hilbert function for $s=12,13$, and 14 as well. This completes the proof for Case 1.

Case 2. Let $s=15$. It is from $s=14$ that

$$
\begin{array}{rccccccccl}
\mathbf{H}\left(R / I_{\mathbb{X}},-\right) & : & 1 & 3 & \cdots & 105 & 120 & \beta & 15-\mathrm{th} & 150 \\
\rightarrow, \\
\mathbf{H}\left(R / I_{\mathbb{Y}},-\right) & : & 1 & 3 & \cdots & 105 & 120 & 136 & 136 & \rightarrow, \\
\mathbf{H}(R /(L, G),-) & : & 1 & 2 & \cdots & 14 & 14 & 14 & 14 & \rightarrow, \\
\mathbf{H}\left(R /\left(I_{\mathbb{Y}}, L, G\right),-\right) & : & 1 & 2 & \cdots & 14 & 14 & \gamma & 0 & \rightarrow,, \\
\mathbf{H}\left(R /\left(I_{\mathbb{Y}}, L\right),-\right) & : & 1 & 2 & \cdots & 14 & 15 & 14 & 0 & \rightarrow,
\end{array}
$$

where $\beta$ and $\gamma$ are unknown. Since $\left(I_{\mathbb{X}}\right)_{15} \subseteq\left(I_{\mathbb{Y}}\right)_{15}=\{0\}$, we see that $\mathbb{X}^{(10,15)}$ has generic Hilbert function, as we wanted.

Case 3. Let $16 \leq s \leq 23$. We can show that $\mathbb{X}^{(10, s)}$ has generic Hilbert function by the same ideas as in Case 1 for $16 \leq s \leq 22$ and as in Case 2 for $s=23$.

Case 4. Let $24 \leq s \leq 45$. We first prove for the case $s=24$ that $\mathbb{X}^{(10,24)}$ has generic Hilbert function. The rest of the case for $25 \leq s \leq 45$ can be also proved by the same methods and thus omitted.


Figure 2

From the case for $s=23$, we have

| $\mathbf{H}\left(R / I_{\mathbb{X}},-\right)$ | $:$ | 1 | 3 | $\cdots$ | 253 | 276 | $\beta$ | $32-\mathrm{rd}$ | 321 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$\rightarrow,$,

where $\beta$ and $\gamma$ are unknown. Hence it suffices to show that $\beta=300$, that is, $\left(I_{\mathbb{X}}\right)_{23}=\{0\}$.

Let $\mathcal{P}_{i}=\left\{P_{i, i+1}, \ldots, P_{i, 24}\right\}$ for $i=1, \ldots, 23$. As done for the previous case, we can make $\mathbb{X}$ satisfy the following:

$$
\begin{aligned}
& L_{1} \quad \text { vanishes on } 24 \text { points } \quad \mathcal{P}_{1} \cup\left\{Q_{1,2}\right\}, \\
& L_{9} \quad \text { vanishes on } 16 \text { points } \quad \mathcal{P}_{9} \cup\left\{Q_{1,10}\right\} \text {, } \\
& L_{10} \text { vanishes on } 15 \text { points } \mathcal{P}_{10} \cup\left\{Q_{2,3}\right\}, \\
& L_{17} \quad \text { vanishes on } 8 \text { points } \quad \mathcal{P}_{17} \cup\left\{Q_{2,10}\right\}, \\
& L_{18} \text { vanishes on } 7 \text { points } \quad \mathcal{P}_{18} \cup\left\{Q_{3,4}\right\}, \\
& L_{23} \quad \text { vanishes on } 2 \text { points } \quad \mathcal{P}_{23} \cup\left\{Q_{3,9}\right\},
\end{aligned}
$$

By Bezout's theorem, for every $N \in\left(I_{\mathbb{X}}\right)_{23}$,

$$
N=\alpha L_{1} \cdots L_{23}
$$

for some $\alpha \in k$. Moreover, since $N$ has to vanish on 22 points in $\mathbb{X}_{2}-$ $\left\{Q_{1,2}, \ldots, Q_{1,10}, Q_{2,3}, \cdots, Q_{2,10}, Q_{3,4}, \ldots, Q_{3,9}\right\}$, where none of $L_{1}, \ldots$, $L_{23}$, vanishes, we see that $N=0$. Therefore, $\left(I_{\mathbb{X}}\right)_{23}=\{0\}$, as we wished.

Case 5. Let $s \geq 46$. By induction on $s, R / I_{\mathbb{Y}}$ has generic Hilbert function and thus we have

$$
\binom{(s-3)+2}{2}+\binom{10}{2} \leq\binom{(s-3)+2}{2}+(s-1)=\binom{(s-2)+2}{2}
$$

and

$$
\begin{aligned}
\mathbf{H}\left(R / I_{\mathbb{Y}}, s-2\right) & =\min \left\{\binom{(s-3)+2}{2}+\binom{10}{2},\binom{(s-2)+2}{2}\right\} \\
& =\binom{(s-3)+2}{2}+\binom{10}{2}
\end{aligned}
$$

Hence
where $\beta$ and $\gamma$ are unknown.

On the Hilbert function of the union of two linear star-configurations in $\mathbb{P}^{2} 561$

Moreover, since $\operatorname{deg} G=s-1$, we have

$$
\begin{aligned}
\mathbf{H}\left(R /\left(I_{\mathbb{Y}}, L, G\right), s-2\right) & =\mathbf{H}\left(R /\left(I_{\mathbb{Y}}, L\right), s-2\right) \\
& =\binom{10}{2},
\end{aligned}
$$

and thus

$$
\begin{aligned}
& \mathbf{H}\left(R / I_{\mathbb{X}}, s-2\right) \\
= & \mathbf{H}\left(R / I_{\mathbb{Y}}, s-2\right)+\mathbf{H}(R /(L, G), s-2)-\mathbf{H}\left(R /\left(I_{\mathbb{Y}}, L, G\right), s-2\right) \\
= & \binom{(s-3)+2}{2}+\binom{10}{2}+(s-1)-\binom{10}{2} \\
= & \binom{(s-3)+2}{2}+(s-1) \\
= & \binom{(s-2)+2}{2} .
\end{aligned}
$$

This means that $\mathbb{X}^{(10, s)}$ has generic Hilbert function, which proves Case 5 , and thus completes the proof of the theorem.

If we couple the work done in [7] with Theorem 2.2, we obtain the following corollary.

Corollary 2.3. If $\mathbb{X}$ is the union of two linear star-configurations in $\mathbb{P}^{2}$ of type $t \times s$ with $3 \leq t \leq 10$ and $3 \leq t \leq s$, then $\mathbb{X}$ has generic Hilbert function.

By Corollary 2.3, [7, Question 5.6] can be revised as follows.
Question 2.4 ([7, Question 5.6 (revised)]). Let $\mathbb{X}:=\mathbb{X}^{(t, s)}$ be the union of two linear star-configurations in $\mathbb{P}^{2}$ of type $t \times s$ with $11 \leq t \leq s$. Does $R / I_{\mathbb{X}}$ have generic Hilbert function?

Remark 2.5. Indeed, we tried to answer to Question 2.4, and found the affirmative answer for $t=11$ as well. But we do not introduce the proof for $t=11$ in this paper because the ideas are basically the same as for $t=10$. It seems likely that we can prove Question 2.4 case by case on $t$, but a general proof is not yet available.

## References

[1] J. Ahn and Y. S. Shin. The Minimal Free Resolution of A fat Star-Configuration in $\mathbb{P}^{n}$, Algebra Colloquium, to appear.
[2] A. V. Geramita, T. Harima, J. C. Migliore, Y. S. Shin, The Hilbert function of a level algebra. Mem. Amer. Math. Soc. 186 (2007), no. 872, vi+139 pp.
[3] A. V. Geramita, T. Harima and Y. S. Shin, Extremal point sets and Gorenstein ideals, Adv. Math. 152 (2000), no. 1, 78-119.
[4] A. V. Geramita, T. Harima and Y. S. Shin, Some Special Configurations of Points in $\mathbb{P}^{n}$, J. Algebra 268 (2003), no. 2, 484-518.
[5] T. Harima, Characterization of Hilbert functions of Gorenstein Artin Algebras with the Weak Stanley property Proc. Amer. Math. Soc. 123 (1995), 3631-3638.
[6] J. C. Migliore and F. Zanello, The Strength of The Weak-Lefschetz Property, Illinois J. Math. 52 (2008), no. 4, 1417-1433.
[7] Y. S. Shin, Secants to The Variety of Completely Reducible Forms and The Union of Star-Configurations, Journal of Algebra and its Applications, To appear.
[8] Y. S. Shin, Star-Configurations in $\mathbb{P}^{2}$ Having Generic Hilbert Functions and The Weak-Lefschetz Property, Comm. in Algebra 40 (2012), no. 6, 2226-2242.

Department of Mathematics
Sungshin Women's University
Seoul 136-742, Republic of Korea
E-mail: ysshin@sungshin.ac.kr


[^0]:    Received June 12, 2012; Accepted July 19, 2012.
    2010 Mathematics Subject Classification: Primary 13A02; Secondary 16W50.
    Key words and phrases: Hilbert functions, fat star-configurations, fat linear starconfigurations, general forms, generic initial ideals.

    This research was supported by a grant from Sungshin Women's University in 2011 (2011-2-41-005).

