JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 25, No. 3, August 2012

ON THE HILBERT FUNCTION OF THE UNION OF TWO LINEAR STAR-CONFIGURATIONS IN \mathbb{P}^2

Yong Su Shin*

ABSTRACT. It has been proved that the union of two linear starconfigurations in \mathbb{P}^2 of type $t \times s$ for $3 \leq t \leq 9$ and $3 \leq t \leq s$ has generic Hilbert function. We extend the condition to t = 10, so that it is true for $3 \leq t \leq 10$, which generalizes the result of [7].

1. Introduction

In recent years Hilbert functions and minimal free resolutions of starconfi- gurations have been extensively studied (see [1, 7, 8]) but those of fat star-configurations are in a stage of exploring. In this paper, we discuss the Hilbert function of the union of two linear star-configurations in the 2 dimensional projective space \mathbb{P}^2 over an algebraically closed field k of an arbitrary characteristic. Let $R = k[x_0, x_1, \ldots, x_n]$ be an (n + 1)variable polynomial ring over a field k and let I be a homogeneous ideal of R (or the ideal of a subscheme in \mathbb{P}^n). Then the numerical function

 $\mathbf{H}(R/I,t) := \dim_k R_t - \dim_k I_t$

is called a *Hilbert function* of the ring R/I. If $I := I_X$ is the ideal of a subscheme X in \mathbb{P}^n , then we denote the Hilbert function of X by

$$\mathbf{H}(R/I_{\mathbb{X}},t) := \mathbf{H}_{\mathbb{X}}(t).$$

It has been also in question to find the vector space dimension of the graded components of coordinate rings of subschemes X in \mathbb{P}^n , that is, the Hilbert function of X (see [2, 3, 4, 5, 6]).

To introduce fat star-configuration and star-configuration, we start with a variety of some specific ideal of R. In [1], the authors proved that if

Received June 12, 2012; Accepted July 19, 2012.

²⁰¹⁰ Mathematics Subject Classification: Primary 13A02; Secondary 16W50.

Key words and phrases: Hilbert functions, fat star-configurations, fat linear starconfigurations, general forms, generic initial ideals.

This research was supported by a grant from Sungshin Women's University in 2011 (2011-2-41-005).

 $F_1, F_2, \ldots,$

 F_r are general forms in R with $r \ge 2$, then

$$\bigcap_{1 \le i < j \le r} (F_i^a, F_j^b) = (\tilde{F}_1, \cdots, \tilde{F}_r),$$

where

$$\tilde{F}_j = \frac{\prod_{i=1}^r F_i^a}{F_j^a} \cdot (F_{j+1} \cdots F_r)^{b-a} \quad \text{for} \quad j = 1, \dots, r, \ 1 \le a \le b.$$

The variety \mathbb{X} in \mathbb{P}^n of the ideal

$$(\tilde{F}_1, \ldots, \tilde{F}_r) = \bigcap_{1 \le i \le j \le r} (F_i^a, F_j^b)$$

is called a *fat star-configuration* in \mathbb{P}^n of type (r, a, b) defined by general forms $F_1 \ldots, F_r$. In particular, if a = b = 1 then we simply call X a *star-configuration* in \mathbb{P}^n of type r defined by general forms $F_1 \ldots, F_r$. Furthermore, if F_1, \ldots, F_r are all general *linear* forms, then X is called a *fat linear star-configuration* of type (r, a, b). If X is a fat linear star-configuration of type r.

In [8], the author studied the relation between the dimension of secant varieties $\operatorname{Sec}_r(\operatorname{Split}_d(\mathbb{P}^n))$ to the variety of completely decomposable forms in R and the Hilbert function of the union \mathbb{X} of two linear starconfigurations in \mathbb{P}^2 of type $t \times s$, and showed that

- 1. X has generic Hilbert function for $3 \le t \le 9$ and $3 \le t \le s$, and
- 2. the secant variety $\operatorname{Sec}_1(\operatorname{Split}_d(\mathbb{P}^n))$ to the variety of completely decomposable forms in R is not defective for $d \geq 3$.

We therefore focus on extension of the result (1) in Section 2 and prove that the Hilbert function of the union \mathbb{X} of two linear star-configurations in \mathbb{P}^2 of type $t \times s$, and that \mathbb{X} has generic Hilbert function when $3 \leq t \leq 10$ and $3 \leq t \leq s$ (see Corollary 2.3). More precisely, we use lines vanishing on multiple points to apply Bezóut's theorem. This is a different idea from [7], which allows us to expand the result of [7].

2. The Hilbert function of the union of star-configurations in \mathbb{P}^2

Let $\mathbb{X} := \mathbb{X}^{(t,s)}$ be the union of two linear star-configurations \mathbb{X}_1 and \mathbb{X}_2 in \mathbb{P}^2 of types t and s (type $t \times s$ for short), defined by general linear forms M_1, \ldots, M_t and L_1, L_2, \ldots, L_s for $3 \leq t \leq s$, respectively, and let $\mathbb{Y} := \mathbb{X}^{(t,s-1)}$ be the union of two linear star-configurations $\mathbb{Y}_1 = \mathbb{X}_1$ and \mathbb{Y}_2 of type $t \times (s-1)$ defined by linear forms M_1, \ldots, M_t and L_2, \ldots, L_s , respectively. Note that $\mathbb{Y}_2 \subseteq \mathbb{X}_2$ and $\mathbb{Y} \subseteq \mathbb{X}$.

On the Hilbert function of the union of two linear star-configurations in \mathbb{P}^2 555

The linear forms create points and lines in \mathbb{P}^2 : $Q_{i,j}$ is a point in \mathbb{X}_1 defined by linear forms M_i and M_j ; $P_{i,j}$ is a point in \mathbb{X}_2 defined by linear forms L_i and L_j with i < j; \mathbb{L}_i and \mathbb{M}_j are lines defined by linear forms L_i and M_j for i = 1, ..., s and j = 1, ..., 10, respectively. We define $G := L_2 \cdots L_s$, a product of (s - 1) linear forms, and $L := L_1$.

In this section, we shall prove that the Hilbert function of the union of two linear star-configurations in \mathbb{P}^2 of types 10 and s with $s \geq 10$ has generic Hilbert function. The proof is based on mainly two ideas. The first idea is that if \mathbb{X}' is the union of two finite sets of points defined by linear forms M_1, \ldots, M_t and L_1, L_2, \ldots, L_s in R (not necessarily general), respectively, then the points in \mathbb{X} are more general than the points in \mathbb{X}' . This implies for every $i \geq 0$ we get

$$\mathbf{H}_{\mathbb{X}'}(i) \leq \mathbf{H}_{\mathbb{X}}(i).$$

The second idea is *Bezout*'s Theorem in \mathbb{P}^2 to find the union \mathbb{X}' of two sets of points defined by linear forms M_1, \ldots, M_t and L_1, L_2, \ldots, L_s in R, respectively, such that

$$\begin{aligned} \mathbf{H}_{\mathbb{X}}(i) &= \mathbf{H}_{\mathbb{X}'}(i) \\ &= \min\left\{ |\mathbb{X}|, \binom{i+2}{2} \right\} & \text{for some} \quad i \geq 0. \end{aligned}$$

In other words, if a form F of degree d in R vanishes on (d + 1)-points on the line defined by a linear form M in R, then F is divided by the linear form M. Throughout this section, we shall not distinguish X from X' for convenience. For the rest of this section, we shall often use the following exact sequence.

(2.1)

$$0 \rightarrow R/I_{\mathbb{X}} \rightarrow R/I_{\mathbb{Y}} \oplus R/(L,G) \rightarrow R/(I_{\mathbb{Y}},L,G) \rightarrow 0.$$

PROPOSITION 2.1. $\mathbb{X} := \mathbb{X}^{(10,10)}$ has generic Hilbert function.

Proof. By [7, Theorem 3.8] and equation (2.1),

							12-th		
$\mathbf{H}(R/I_{\mathbb{X}},-)$:	1	3	•••	66	78	eta	90	ightarrow,
$\mathbf{H}(R/I_{\mathbb{Y}},-)$:	1	3	•••	66	78	81	81	ightarrow,
$\mathbf{H}(R/(L,G),-)$:	1	2	•••	9	9	9	9	ightarrow,
$\mathbf{H}(R/(I_{\mathbb{Y}},L,G),-)$:	1	2	•••	9	9	γ	0	ightarrow,
$\mathbf{H}(R/(I_{\mathbb{Y}},L),-)$:	1	2	• • •	11	12	3	0	ightarrow,

where β and γ are unknown. Hence it suffices to show that $\beta = 90$, that is, $\dim_k(I_X)_{12} = 1$.

Let X_1 and X_2 be finite sets of 45 points defined by $L_1, L_2, L_3, L_4, L_5, L_6, L_7, L_8, L_9, L_{10}$, and $M_1, M_2, M_3, M_4, M_5, M_6, M_7, M_8, M_9, M_{10}$, respectively, where L_i and M_i are linear forms (see Figure 1), and $X := X_1 \cup X_2$.

FIGURE 1

As shown in Figure 1, we have that

L_1	vanishes on 13 points	$P_{1,2}, P_{1,3}, P_{1,4}, P_{1,5}, P_{1,6}, P_{1,7}, P_{1,8}, P_{1,9}, P_{1,10},$
		$Q_{1,2}, Q_{1,3}, Q_{2,3}, Q_{4,5},$
L_2	vanishes on 12 points	$P_{2,3}, P_{2,4}, P_{2,5}, P_{2,6}, P_{2,7}, P_{2,8}, P_{2,9}, P_{2,10}, Q_{1,4},$
		$Q_{3,5}, Q_{3,6}, Q_{5,6},$
L_3	vanishes on 11 points	$P_{3,4}, P_{3,5}, P_{3,6}, P_{3,7}, P_{3,8}, P_{3,9}, P_{3,10}, Q_{2,6}, Q_{2,7},$
		$Q_{3,4}, Q_{6,7},$
L_4	vanishes on 10 points	$P_{4,5}, P_{4,6}, P_{4,7}, P_{4,8}, P_{4,9}, P_{4,10}, Q_{1,7}, Q_{1,8}, Q_{2,4},$
		$Q_{7,8},$
L_5	vanishes on 9 points	$P_{5,6}, P_{5,7}, P_{5,8}, P_{5,9}, P_{5,10}, Q_{2,8}, Q_{4,7}, Q_{4,9}, Q_{7,9}$
L_6	vanishes on 8 points	$P_{6,7}, P_{6,8}, P_{6,9}, P_{6,10}, Q_{3,9}, Q_{6,8}, Q_{6,10}, Q_{8,10},$
M_{10}	vanishes on 7 points	$Q_{1,10}, Q_{2,10}, Q_{3,10}, Q_{4,10}, Q_{5,10}, Q_{7,10}, Q_{9,10},$
M_5	vanishes on 6 points	$P_{7,8}, Q_{1,5}, Q_{2,5}, Q_{5,7}, Q_{5,8}, Q_{5,9},$
M_9	vanishes on 5 points	$P_{7,9}, Q_{1,9}, Q_{2,9}, Q_{6,9}, Q_{8,9},\\$

On the Hilbert function of the union of two linear star-configurations in $\mathbb{P}^2~557$

 $\begin{array}{ll} L_{10} & \text{vanishes on 4 points} & P_{7,10}, P_{8,10}, P_{9,10}, Q_{4,8}, \\ M_3 & \text{vanishes on 3 points} & P_{8,9}, Q_{3,7}, Q_{3,8}, \\ M_6 & \text{vanishes on 2 points} & Q_{1,6}, Q_{4,6}. \end{array}$

By Bezout's theorem, for every $N \in (I_{\mathbb{X}})_{12}$,

$$N = \alpha L_1 \cdots L_6 L_{10} M_3 M_5 M_6 M_9 M_{10}$$

for some $\alpha \in k$. Thus

$$\dim_k(I_{\mathbb{X}})_{12} = 1,$$

which completes the proof.

THEOREM 2.2. $\mathbb{X} := \mathbb{X}^{(10,s)}$ has generic Hilbert function for $s \geq 10$.

Proof. By Proposition 2.1, this theorem holds for s = 10. Now assume $s \ge 11$. We shall prove these with 5 cases.

Case 1. Let $11 \le s \le 14$. First assume s = 11. By Proposition 2.1,

							12-th		
$\mathbf{H}(R/I_{\mathbb{X}},-)$:	1	3	• • •	66	78	β	100	ightarrow,
$\mathbf{H}(R/I_{\mathbb{Y}},-)$:	1	3	•••	66	78	90	90	ightarrow,
$\mathbf{H}(R/(L,G),-)$:	1	2	• • •	10	10	10	10	ightarrow,
$\mathbf{H}(R/(I_{\mathbb{Y}},L,G),-)$:	1	2	• • •	10	10	γ	0	ightarrow,
$\mathbf{H}(R/(I_{\mathbb{Y}},L),-)$:	1	2	• • •	11	12	12	0	ightarrow,

where β and γ are unknown. Hence it suffices to show that $\beta = 91$, that is, $\dim_k(I_X)_{12} = 0$.

As shown in Figure 2, we have that

L_1	vanishes on 13 points	$P_{1,2}, P_{1,3}, P_{1,4}, P_{1,5}, P_{1,6}, P_{1,7}, P_{1,8}, P_{1,9},$
		$P_{1,10}, P_{1,11}, Q_{1,2}, Q_{1,3}, Q_{2,3},$
L_2	vanishes on 12 points	$P_{2,3}, P_{2,4}, P_{2,5}, P_{2,6}, P_{2,7}, P_{2,8}, P_{2,9}, P_{2,10},$
		$P_{2,11}, Q_{3,4}, Q_{3,5}, Q_{4,5},$
L_3	vanishes on 11 points	$P_{3,4}, P_{3,5}, P_{3,6}, P_{3,7}, P_{3,8}, P_{3,9}, P_{3,10}, P_{3,11},$
		$P_{3,11}, Q_{5,6}, Q_{5,7}, Q_{6,7},$
L_4	vanishes on 10 points	$P_{4,5}, P_{4,6}, P_{4,7}, P_{4,8}, P_{4,9}, P_{4,10}, P_{4,11}, Q_{1,5},$
		$Q_{1,8}, Q_{5,8},$
M_{10}	vanishes on 9 points	$Q_{1,10}, Q_{2,10}, Q_{3,10}, Q_{4,10}, Q_{5,10}, Q_{6,10}, Q_{7,10},$
		$Q_{8,10}, Q_{9,10},$

 M_9 vanishes on 8 points $Q_{1,9}, Q_{2,9}, Q_{3,9}, Q_{4,9}, Q_{5,9}, Q_{6,9}, Q_{7,9}, Q_{8,9},$ $P_{5,6}, P_{5,7}, P_{5,8}, P_{5,9}, P_{5,10}, P_{5,11}, Q_{1,6},$ L_5 vanishes on 7 points $P_{6,7}, P_{6,8}, P_{6,9}, P_{6,10}, P_{6,11}, Q_{1,7},$ L_6 vanishes on 6 points M_8 vanishes on 5 points $Q_{2,8}, Q_{3,8}, Q_{4,8}, Q_{6,8}, Q_{7,8},$ $P_{7,8}, P_{7,9}, P_{7,10}, P_{7,11},$ L_7 vanishes on 4 points L_8 vanishes on 3 points $P_{8,9}, P_{8,10}, P_{8,11},$ vanishes on 2 points $P_{9,10}, P_{9,11}.$ L_9

By Bezout's theorem, for every $N \in (I_X)_{12}$,

$$N = \alpha L_1 \cdots L_9 M_8 M_9 M_{10}$$

for some $\alpha \in k$. Moreover, since all the 10-points $P_{10,11}, Q_{1,4}, Q_{2,4}, Q_{2,5}, Q_{2,6}, Q_{2,7}, Q_{3,6}, Q_{3,7}, Q_{4,6}$, and $Q_{4,7}$ are not on a single line, and N has to vanish on those 10-points, where none of $L_1, \ldots, L_9, M_8, M_9, M_{10}$ can vanish, we see that N = 0. Therefore,

$$(I_{\mathbb{X}})_{12} = \{0\},\$$

as we wished.

By the same idea as in the case for s = 11, one can show that $\mathbb{X}^{(10,s)}$ has generic Hilbert function for s = 12, 13, and 14 as well. This completes the proof for *Case* 1.

Case 2. Let s = 15. It is from s = 14 that

						15-th		
:	1	3	• • •	105	120	eta	150	ightarrow,
:	1	3	•••	105	120	136	136	ightarrow,
:	1	2	•••	14	14	14	14	ightarrow,
:	1	2	•••	14	14	γ	0	ightarrow,
:	1	2	• • •	14	15	14	0	ightarrow,
	: : :	: 1 : 1 : 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

where β and γ are unknown. Since $(I_{\mathbb{X}})_{15} \subseteq (I_{\mathbb{Y}})_{15} = \{0\}$, we see that $\mathbb{X}^{(10,15)}$ has generic Hilbert function, as we wanted.

Case 3. Let $16 \le s \le 23$. We can show that $\mathbb{X}^{(10,s)}$ has generic Hilbert function by the same ideas as in *Case* 1 for $16 \le s \le 22$ and as in *Case* 2 for s = 23.

Case 4. Let $24 \le s \le 45$. We first prove for the case s = 24 that $\mathbb{X}^{(10,24)}$ has generic Hilbert function. The rest of the case for $25 \le s \le 45$ can be also proved by the same methods and thus omitted.

On the Hilbert function of the union of two linear star-configurations in $\mathbb{P}^2~559$

FIGURE 2

From the case for s = 23, we have

where β and γ are unknown. Hence it suffices to show that $\beta = 300$, that is, $(I_X)_{23} = \{0\}$.

Let $\mathcal{P}_i = \{P_{i,i+1}, \ldots, P_{i,24}\}$ for $i = 1, \ldots, 23$. As done for the previous case, we can make X satisfy the following:

 $\begin{array}{cccc} L_1 & \text{vanishes on 24 points} & \mathcal{P}_1 \cup \{Q_{1,2}\}, \\ & & \vdots \\ L_9 & \text{vanishes on 16 points} & \mathcal{P}_9 \cup \{Q_{1,10}\}, \\ L_{10} & \text{vanishes on 15 points} & \mathcal{P}_{10} \cup \{Q_{2,3}\}, \\ & & \vdots \\ L_{17} & \text{vanishes on 8 points} & \mathcal{P}_{17} \cup \{Q_{2,10}\}, \\ L_{18} & \text{vanishes on 7 points} & \mathcal{P}_{18} \cup \{Q_{3,4}\}, \\ & & \vdots \\ L_{23} & \text{vanishes on 2 points} & \mathcal{P}_{23} \cup \{Q_{3,9}\}, \end{array}$

By Bezout's theorem, for every $N \in (I_X)_{23}$,

$$N = \alpha L_1 \cdots L_{23}$$

for some $\alpha \in k$. Moreover, since N has to vanish on 22 points in $\mathbb{X}_2 - \{Q_{1,2}, \ldots, Q_{1,10}, Q_{2,3}, \cdots, Q_{2,10}, Q_{3,4}, \ldots, Q_{3,9}\}$, where none of L_1, \ldots, L_{23} , vanishes, we see that N = 0. Therefore, $(I_{\mathbb{X}})_{23} = \{0\}$, as we wished.

Case 5. Let $s \geq 46$. By induction on s, $R/I_{\mathbb{Y}}$ has generic Hilbert function and thus we have

$$\binom{(s-3)+2}{2} + \binom{10}{2} \le \binom{(s-3)+2}{2} + (s-1) = \binom{(s-2)+2}{2},$$

and

$$\mathbf{H}(R/I_{\mathbb{Y}}, s-2) = \min\left\{\binom{(s-3)+2}{2} + \binom{10}{2}, \binom{(s-2)+2}{2}\right\} \\ = \binom{(s-3)+2}{2} + \binom{10}{2}.$$

Hence

where β and γ are unknown.

On the Hilbert function of the union of two linear star-configurations in \mathbb{P}^2 561

Moreover, since deg G = s - 1, we have

$$\mathbf{H}(R/(I_{\mathbb{Y}},L,G),s-2) = \mathbf{H}(R/(I_{\mathbb{Y}},L),s-2)$$
$$= \binom{10}{2},$$

and thus

$$\begin{aligned} & \mathbf{H}(R/I_{\mathbb{X}}, s-2) \\ &= \mathbf{H}(R/I_{\mathbb{Y}}, s-2) + \mathbf{H}(R/(L,G), s-2) - \mathbf{H}(R/(I_{\mathbb{Y}}, L, G), s-2) \\ &= \binom{(s-3)+2}{2} + \binom{10}{2} + (s-1) - \binom{10}{2} \\ &= \binom{(s-3)+2}{2} + (s-1) \\ &= \binom{(s-2)+2}{2}. \end{aligned}$$

This means that $\mathbb{X}^{(10,s)}$ has generic Hilbert function, which proves *Case* 5, and thus completes the proof of the theorem.

If we couple the work done in [7] with Theorem 2.2, we obtain the following corollary.

COROLLARY 2.3. If X is the union of two linear star-configurations in \mathbb{P}^2 of type $t \times s$ with $3 \leq t \leq 10$ and $3 \leq t \leq s$, then X has generic Hilbert function.

By Corollary 2.3, [7, Question 5.6] can be revised as follows.

QUESTION 2.4 ([7, Question 5.6 (revised)]). Let $\mathbb{X} := \mathbb{X}^{(t,s)}$ be the union of two linear star-configurations in \mathbb{P}^2 of type $t \times s$ with $11 \leq t \leq s$. Does $R/I_{\mathbb{X}}$ have generic Hilbert function?

REMARK 2.5. Indeed, we tried to answer to Question 2.4, and found the affirmative answer for t = 11 as well. But we do not introduce the proof for t = 11 in this paper because the ideas are basically the same as for t = 10. It seems likely that we can prove Question 2.4 case by case on t, but a general proof is not yet available.

References

- J. Ahn and Y. S. Shin. The Minimal Free Resolution of A fat Star-Configuration in Pⁿ, Algebra Colloquium, to appear.
- [2] A. V. Geramita, T. Harima, J. C. Migliore, Y. S. Shin, The Hilbert function of a level algebra. Mem. Amer. Math. Soc. 186 (2007), no. 872, vi+139 pp.
- [3] A. V. Geramita, T. Harima and Y. S. Shin, Extremal point sets and Gorenstein ideals, Adv. Math. 152 (2000), no. 1, 78-119.
- [4] A. V. Geramita, T. Harima and Y. S. Shin, Some Special Configurations of Points in Pⁿ, J. Algebra 268 (2003), no. 2, 484–518.

- [5] T. Harima, Characterization of Hilbert functions of Gorenstein Artin Algebras with the Weak Stanley property Proc. Amer. Math. Soc. 123 (1995), 3631–3638.
- [6] J. C. Migliore and F. Zanello, The Strength of The Weak-Lefschetz Property, Illinois J. Math. 52 (2008), no. 4, 1417–1433.
- [7] Y. S. Shin, Secants to The Variety of Completely Reducible Forms and The Union of Star-Configurations, Journal of Algebra and its Applications, To appear.
- [8] Y. S. Shin, Star-Configurations in P² Having Generic Hilbert Functions and The Weak-Lefschetz Property, Comm. in Algebra 40 (2012), no. 6, 2226-2242.

*

Department of Mathematics Sungshin Women's University Seoul 136-742, Republic of Korea *E-mail*: ysshin@sungshin.ac.kr